Convective and absolute electrokinetic instability with conductivity gradients
نویسندگان
چکیده
Electrokinetic flow instabilities occur under high electric fields in the presence of electrical conductivity gradients. Such instabilities are a key factor limiting the robust performance of complex electrokinetic bio-analytical systems, but can also be exploited for rapid mixing and flow control for microscale devices. This paper reports a representative flow instability phenomenon studied using a microfluidic T-junction with a cross-section of 11 μm by 155 μm. In this system, aqueous electrolytes of 10:1 conductivity ratio were electrokinetically driven into a common mixing channel by a steady electric field. Convectively unstable waves were observed with a nominal threshold field of 0.5 kV cm−1, and upstream propagating waves were observed at 1.5 kV cm−1. A physical model has been developed for this instability which captures the coupling between electric and flow fields. A linear stability analysis was performed on the governing equations in the thin-layer limit, and Briggs–Bers criteria were applied to select physically unstable modes and determine the nature of instability. The model predicts both qualitative trends and quantitative features that agree very well with experimental data, and shows that conductivity gradients and their associated bulk charge accumulation are crucial for such instabilities. Comparison between theory and experiments suggests the convective role of electro-osmotic flow. Scaling analysis and numerical results show that the instability is governed by two key controlling parameters: the ratio of dynamic to dissipative forces which governs the onset of instability, and the ratio of electroviscous to electro-osmotic velocities which governs the convective versus absolute nature of instability.
منابع مشابه
Convective instability of electrokinetic flows in a cross-shaped microchannel
We present a parametric experimental study of convective electrokinetic instability (EKI) in an isotropically etched, cross-shaped microchannel using quantitative epifluorescence imaging. The base state is a three-inlet, one-outlet electrokinetic focusing flow configuration where the centre sample stream and sheath flows have mismatched ionic conductivities. Electrokinetic flows with conductivi...
متن کاملA depth-averaged electrokinetic flow model for shallow microchannels
Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic applications such as sample stacking and multidimensional assays. Electromechanical coupling in these flows may lead to complex flow phenomena, such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic instability (EKI). In this work we develop a generalized electrokineti...
متن کاملInstability of electrokinetic microchannel flows with conductivity gradients
Electrokinetic flow is leveraged in a variety of applications, and is a key enabler of on-chip electrophoresis systems. An important sub-class of electrokinetic devices aim to pump and control electrolyte working liquids with spatial gradients in conductivity. These high-gradient flows can become unstable under the application of a sufficiently strong electric field. In this work the instabilit...
متن کاملFluid Mixing Control inside a Y-shaped Microchannel by Using Electrokinetic Instability
An experimental study was conducted to further our understanding about the fundamental physics of electrokinetic instability (EKI) and to explore the effectiveness to enhance fluid mixing inside a Y-shaped microchannel by manipulating convective EKI waves. The dependence of the critical voltage of applied static electric field to trig EKI to generate convective EKI waves on the conductivity rat...
متن کاملMultiple-species model for electrokinetic instability
In this paper we present a multiple-species electrokinetic instability sMSEKId model. We consider a high aspect ratio flow geometry, a base state where the conductivity gradient is orthogonal to the applied electric field si.e., a spanwise gradient configurationd, and a four-species chemistry model. A linear stability analysis sLSAd of the depth-averaged governing equations is shown to have uns...
متن کامل